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Objective: To summarize the role of melatonin and circadian rhythms in determining optimal female reproductive physiology,
especially at the peripheral level.
Design: Databases were searched for the related English-language literature published up to March 1, 2014. Only papers in peer-
reviewed journals are cited.
Setting: Not applicable.
Patient(s): Not applicable.
Intervention(s): Melatonin treatment, alterations of the normal light:dark cycle and light exposure at night.
Main Outcome Measure(s): Melatonin levels in the blood and in the ovarian follicular fluid and melatonin synthesis, oxidative dam-
age and circadian rhythm disturbances in peripheral reproductive organs.
Result(s): The central circadian regulatory system is located in the suprachiasmatic nucleus (SCN). The output of this master clock is
synchronized to 24 hours by the prevailing light-dark cycle. The SCN regulates rhythms in peripheral cells via the autonomic nervous
system and it sends a neural message to the pineal gland where it controls the cyclic production of melatonin; after its release, the
melatonin rhythm strengthens peripheral oscillators. Melatonin is also produced in the peripheral reproductive organs, including
granulosa cells, the cumulus oophorus, and the oocyte. These cells, along with the blood, may contribute melatonin to the follicular
fluid, which has melatonin levels higher than those in the blood. Melatonin is a powerful free radical scavenger and protects the
oocyte from oxidative stress, especially at the time of ovulation. The cyclic levels of melatonin in the blood pass through the
placenta and aid in the organization of the fetal SCN. In the absence of this synchronizing effect, the offspring may exhibit
neurobehavioral deficits. Also, melatonin protects the developing fetus from oxidative stress. Melatonin produced in the placenta
likewise may preserve the optimal function of this organ.
Conclusion(s): Both stable circadian rhythms and cyclic melatonin availability are critical for optimal ovarian physiology and
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o ensure survival of any species, perturbations of the normal light-dark photoperiodic cycle, especially, for
T the most critical process is suc-
cessful reproduction. The chal-

lenges to achieving this complex
process, however, are becoming increas-
ingly daunting considering the rise in air
and water pollutants, food contamina-
tion, and possibly particularly due to
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environment under which humanoids
and other vertebrates have evolved
over the past 4 million years. This latter
issue is frequently overlooked as a factor
that compromises successful reproduc-
tion. There are, however, physiologic
consequences associated with an altered
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example, bright light exposure during
the normal period of darkness, i.e., at
night.

Thewidespreaduse ofmanufactured
light has led to truncationof theduration
of darkness with artificial light exposure
after sunset or before sunrise and inter-
ruption of darkness at night with brief
periods of light or light throughout the
night, such as for night-shift workers,
e.g., hospital staff. These changes in the
environmental norm are by no means
inconsequential. The central circadian
pacemaker, the suprachiasmatic nuclei
(SCN) in the hypothalamus, relies on
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VIEWS AND REVIEWS
regular recurring periods of light and darkness which, when
disturbed, initiates abnormal physiology. Moreover, truncating
the duration of the daily dark periodwith artificial light severely
limits total pinealmelatonin production. Both regular circadian
rhythms and ample melatonin are conducive to successful
reproduction (1–3).
THE BIOLOGIC CLOCK, PERIPHERAL
CIRCADIAN RHYTHMS, AND MELATONIN
The circadian signal for daily changes in physiology origi-
nates in the SCN, a small bilateral group of neurons in the
anterobasal hypothalamus, that have an intrinsic circadian
cycle of slightly greater than 24 hours (4, 5). Because of the
lack of preciseness of this self-sustained rhythm, during evo-
lution it became synchronized to 24 hours by the rising and
setting of the sun. In current economically developed soci-
eties, however, the synchronizing effect of the natural rising
and setting of the sun has been subverted by a highly irregular
light-dark environment imposed by the ubiquitous use of arti-
ficial light sources.

The circadian signal generated in the SCN is transferred to
cells in peripheral tissues by means of the central and periph-
eral autonomic nervous system; in the periphery, this system
regulates changes in the physiology of cells over each
24-hour period. Depending on the cell type, up to 20% of
the genes in individual cells may exhibit self-sustained
rhythms (6, 7). For optimal function, the expression of these
peripheral rhythms must be accurately regulated by the
SCN. When the master clock signal is disturbed, the
peripheral cellular rhythms are likewise negatively affected
and their physiologic output suffers accordingly. The
circadian output genes in populations of peripheral cells
differ according to the tissue in which they reside (8, 9). The
rhythms in individual cells must be coordinated with those
of neighboring cells but they must also maintain a given
phase relationship with more remote organs.

A second pathway by which the central clock imposes it-
self on the peripheral slave oscillators is via the melatonin
rhythm derived from the pineal gland; this cycle is a universal
feature of all vertebrates (10). Because many peripheral tis-
sues are not innervated either by the sympathetic or parasym-
pathetic autonomic nervous systems, these cells must receive
the circadianmessage from another source. Presumably this is
from the circadian rhythm of melatonin, which reaches every
cell via the blood. This may also require that these peripheral
cells possess receptors that ‘‘read’’ and respond to this
photoperiod-dependent cycle. Two decades ago, the experi-
mental evidence indicated that at least the known membrane
receptors for melatonin, MT1 and MT2, had a rather limited
distribution (11). More recent studies have revealed, however,
that they are more widely distributed than originally sup-
posed (12, 13); our current view is that these receptors may
exist on the membranes of all cells whose activity must be
synchronized by the melatonin cycle. However, melatonin
also affects cellular physiology by processes that are
independent from receptors, when it functions as a free
radical scavenger (3, 14), so the membrane mediators may
not be a requirement for melatonin to influence circadian
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gene expression in peripheral cells. Melatonin, as well as
several of its metabolites, is highly effective in scavenging
radicals and reducing oxidative stress (14).

The pineal-derived melatonin rhythm, in either the cere-
brospinal fluid (CSF) (15) or the blood (4, 5), strengthens the
circadian message that the SCN communicates to other
organs via the autonomic nervous system. Perturbations of
the cyclic melatonin pattern weaken the SCN message,
contributing to faulty information being received by the
peripheral organs. This defective signal negatively affects
circadian gene expression and physiology in peripheral
tissues, which contributes to dysfunction, such as some
mood and cognitive disorders.

The earliest identified manifestation of the circadian
melatonin rhythm being critical to reproductive physiology
was in reference to photoperiod-driven seasonal reproduction
(16, 17). In their natural habitat, many species rely on the
changing duration of the elevated nocturnal melatonin
levels (16) as determined by the length of the night, to
signal changes in the physiology of the neuroendocrine-
reproductive axis, which in turn alters the function of the
peripheral reproductive organs (17, 18). This cyclic message
is essential for both long-day and short-day breeders for the
timing of the successful coincidence of maximal reproductive
fertility in both female and male members of the species to
ensure timely mating, fertilization, and delivery of the young
(19). Depriving hamsters of the circadian melatonin rhythm
by pinealectomizing them renders their reproductive systems
unresponsive to the seasonal photoperiod changes (20). Like-
wise, stabilizing the light-dark cycle to which these animals
are exposed often allows them to become continual year-
round breeders because the melatonin rhythm is consistent
from day to day, i.e., it lacks seasonal information.

In addition to being indispensable for mediating season-
ally dependent reproductive capability, it seems safe to as-
sume that clock genes and their related 24-hour rhythms
likewise play important roles in peripheral reproductive func-
tions (21). Knowledge related to the beneficial role of mela-
tonin, either from a distance site or locally produced, on the
gonads and accessory organs is significantly more advanced
than is the information about the role of intrinsic circadian
processes in these tissues (22). However, whether the circadian
cycle of melatonin and an action on clock genes is essential
for melatonin's peripheral effects on the gonads has not
been established. Many of melatonin's known functions in
the peripheral reproductive system relate to its ability to func-
tion as an antioxidant, an action that is not known to be time
dependent (22, 23). Moreover, melatonin produced at the level
of reproductive tissues themselves provide a portion of the
protection against molecular damage resulting from local
free radical generation (24, 25).
MELATONIN PRODUCTION IN THE
PERIPHERAL REPRODUCTIVE SYSTEM
We have proposed that mitochondria may be sites of mela-
tonin synthesis within all cells, not only in pinealocytes
(26). Given that every cell must possess mitochondria to sur-
vive, the obvious implication is that all cells generate
VOL. 102 NO. 2 / AUGUST 2014
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melatonin for their local use, likely for cell protection against
free radicals. Certainly, the idea that the pineal gland is the
only organ that produces melatonin is obsolete. Indeed, the
list of extrapineal sites of melatonin synthesis is now exten-
sive and expanding (27, 28).

Regarding the peripheral reproductive system, of special
interest is that melatonin concentrations in fluid collected
from the human ovarian follicle exceed those in simulta-
neously collected blood samples (29, 30). Besides being in
higher concentrations in the follicular fluid than in the
general circulation, the levels of melatonin exhibit a
24-hour rhythm in the follicle (31) and the values reportedly
increase as the follicle enlarges and ovulation approaches
(Fig. 1) (32). Either the vesicular follicle has a means of
concentrating melatonin from the blood against a gradient,
or all or some of the melatonin in the follicular fluid is from
another source. Recent studies support the latter assumption;
the ovary as a whole (33, 34), the granulosa cells, including
those making up the cumulus oophorus (24, 35), and the
oocyte (36) have been reported to synthesize melatonin.
Melatonin in the ovary also may be concerned with
FIGURE 1

Presumed association of melatonin with the developing follicle and corp
Melatonin levels in the follicular fluid gradually increase as the follicle en
those in the blood by 2–3 fold. Melatonin in the follicles presumably ai
damage by free radicals; this is especially the case at ovulation, when fre
probably derive from several sites (a–e), all of which have been shown t
gland. After ovulation, luteinization of the developing corpus luteum and
Reiter. Melatonin, circadian rhythms, and reproduction. Fertil Steril 2014.
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progesterone production by the transforming granulosa
cells after ovulation (37). As with other extrapineal organs
that generate melatonin, the ovarian cells do not discharge
melatonin into the general circulation. Rather, these cells
use the melatonin they produce for their own benefit or for
that of their neighboring cells, i.e., as an antioxidant and as
an autocrine or paracrine agent (38).

Ovulation, a process supported by the cyclic release of pi-
tuitary LH (39), is accompanied by alterations at the ovarian
level that culminate in the rupture of the graafian follicle
and the discharge of the oocyte. The process of ovulation
has been likened to an inflammatory reaction (40). The evi-
dence for this comes from the observations that follicular
rupture is accompanied by the locally elevated production
of prostaglandins and cytokines, the increased action of pro-
teolytic enzymes and the heightened permeability of small
blood vessels in the follicular wall (41, 42). These changes
are associated with the generation of reactive oxygen
species by macrophages, neutrophils, and endothelial cells,
which also contribute to the disintegration of the follicular
wall to allow the escape of the oocyte (43).
us luteum, based on observations from human and animal studies.
larges, and in the graafian follicle melatonin concentrations exceed
ds in the development of the oocyte and protects it from oxidative
e radical generation is at its highest. Follicular fluid melatonin levels
o produce melatonin. Blood melatonin levels derive from the pineal
the production of progesterone may also be assisted by melatonin.
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At ovulation, the oocyte, because of its proximity to the
inflammation in the wall of the rupturing follicle, sits in a
highly vulnerable position which could lead to molecular dis-
figuration of this critical cell by nearby ROS. If successfully
fertilized and implanted, a mutilated oocyte would result in
pregnancy interruption or in a structurally or functionally
impaired fetus. It seems obvious, therefore, that the ovum
must be especially well protected from oxidative stress at the
time of its extrusion from the follicle. As a result, we have
speculated that this is the reason that the cells of the cumulus
oophorus (35) and the oocyte (36, 37) produce the potent
antioxidant melatonin (2). After the oocyte is shed, it is
presumed that melatonin also participates in the maturation
of the corpus luteum and aids in progesterone production (44).

The ability of melatonin to protect oocytes from molecu-
lar mutilation by toxic oxygen derivatives is documented.
Melatonin reduces the accumulation of oxidatively damaged
oocytes incubated with oxidizing agents and improves the
outcome of IVF-ET. This is well illustrated by studies per-
formed by Tamura et al. (45) with the use of both mouse
and human tissues. Cumulus-free mouse oocytes retrieved
from preovulatory follicles were incubated for 12 hours in a
solution containing various concentrations of hydrogen
peroxide (H2O2); in addition to being a strong oxidizing agent,
H2O2 is also readily converted to the highly damaging hy-
droxyl radical ($OH). After 12 hours, oocytes containing a
first polar body (as an index of amature oocyte) were counted.
H2O2, in a concentration-dependent manner, significantly
reduced oocyte maturation; however, when melatonin was
added to the incubation medium in combination with H2O2,
a much larger percentage of oocytes remained undamaged
and reached maturity (45).

Tamura et al. (45) also extended these studies to the human,
where they specifically measured oxidatively damaged lipid
and DNA. Both follicularfluid and oocytes were transvaginally
collected from gonadotropin-stimulated ovarian follicles in
women. The retrieved oocytes were classified, based on
FIGURE 2

(A) The levels of the oxidatively-damaged DNA product, 8-hydroxy-20-deox
oocytes were judged to be of high quality (<30% damage) or poor quality
Oocytes manifesting the greatest degenerative changes had significantly hi
between the intrafollicular levels of 8-OHdG and melatonin. Melatonin is a
oocytes from free radical damage. Modified from Tamura et al. (45).
Reiter. Melatonin, circadian rhythms, and reproduction. Fertil Steril 2014.
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morphologic characteristics, as being of either good or poor
quality. The follicular fluid corresponding to each of the
oocytes was evaluated for the levels of oxidative stress as indi-
cated by the presence of 8-hydroxy-20-deoxyguanosine
(8-OHdG), a damaged-DNA product, and for melatonin.
The results showed that the highest levels of 8-OHdGwere asso-
ciated with the poorest quality oocytes. Moreover, the
intrafollicular levels of 8-OHdG were negatively correlated
withmelatonin concentrations in thisfluid (Fig. 2). These results
are consistentwith the antioxidantmelatonin having protected
oocyte DNA from oxidative damage and cellular degeneration.

Finally, with the intention of improving the outcome of
IVF-ET by reducing free radical–mediated damage, 56 women
who had a low fertilization rate in an earlier IVF-ET cycle
were given melatonin (3 mg) orally each day for about a
month before undergoing the procedure again. Compared
with the previous IVF-ET cycle, melatonin ingestion doubled
the fertilization and successful pregnancy rate in the women
(44, 45). Considering what must be considered to be a small
amount of natural melatonin, it seems likely that the use of
larger daily quantities may further protect the oocytes from
free radical damage and greater success of IVF-ET. The tech-
nology of protecting oocytes and sperm from oxidative dam-
age with melatonin has also been successively applied in
veterinary reproductive science (46).

Although ROS may actually aid in oocyte maturation (47)
and follicular rupture (42) to permit its extrusion, an excessive
level of free radicals would surely damage this critically
important cell. Therefore, a delicate balance must be main-
tained in the follicle to ensure successful maturation of the
oocyte and timely follicular rupture. The presence of mela-
tonin, a proven antioxidant, in the ovary likely helps to main-
tain this balance. In addition to maintaining a high-quality
oocyte, melatonin may also prevent ROS from damaging
the granulosa cells, which must undergo luteinization and
produce progesterone (47). As with damaged oocytes,
luteal-phase defects also contribute to infertility.
yguanosine (8-OHdG) in the ovarian follicular fluid of women in which
(>30% damage; based on the amount of the damaged-DNA product).
gher DNA damage (*P<.01). (B) This illustrates the negative correlation
proven potent antioxidant. The implication is that melatonin protects
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MELATONIN AND THE PLACENTA
Melatonin, along with the enzymes (arylalkylamine N-acetyl-
transferase and acetylserotonin methyltransferase) required
for its synthesis, were discovered in the human placenta in
2008 (48). Not only is melatonin produced in this tissue, but
the villous trophoblasts also possess the knownmembrane re-
ceptors for it, i.e., MT1 andMT2. These studies were performed
on normal near-term placentas (37–41 weeks); little is known
about the maturation of the placental melatonin-generating
system during the earlier stages of pregnancy. The presence
of the receptors suggests that melatonin has receptor-
mediated actions in the placenta; however, it is also capable
of receptor-independent actions when it functions as a radical
scavenger (2, 25). The placental primary villous trophoblasts
are composed of the mononuclear cytotrophoblasts (vCTB)
and the multinuclear syncytiotrophoblasts (STB). Throughout
pregnancy, mature vCTB fuse to form STB in a highly
regulated process. During this process, it is imperative that
the vCTB not undergo apoptosis before the fusion process.
This is essential because the STB cells quickly turn over and
degenerate and must be continually replaced by fusion of the
vCTB (49, 50). Melatonin presumably ensures successful
maintenance of the STB by preventing the vCTB from
falling victim to apoptosis. This morphogenic action of
melatonin aids in ensuring optimal placental function and
successfully maintains pregnancy.

In contrast to the benefits of preventing programmed cell
death of thevCTB, prolongationof cellular half-life by reducing
the likelihood of apoptosis would be counterproductive for the
organism in the case of placental cancer cells. Several chorio-
carcinoma cell lines are available for study, e.g., BeWo (51,
52). These cells are often used as a model for vCTB because
they fuse to form a syncytium; likewise, they also synthesize
melatonin and contain its receptors (48). Unlike normal vCTB
cells, however, BeWo cells undergo apoptosis in response to
melatonin (35). As in other cells, in the placenta, melatonin's
actions are clearly context specific (52). Thus, melatonin
often kills cancer cells by promoting programmed cell death
while having the opposite action in normal cells. The
mechanisms of these differential actions of melatonin in
normal and cancer cells is under investigation (53).

Relevant to a discussion of melatonin in the placenta is its
potential association with preeclampsia, an etiologically
ambiguous condition. During severe preeclampsia, blood
melatonin concentrations are diminished (54) and placental
levels of melatonin as well as its receptors are similarly
depressed (55). Preeclampsia is a serious disorder in which
elevated ROS production is thought to be contributory, and
it is known to involve the placenta because after delivery of
the placenta, preeclampsia quickly disappears (44). Because
melatonin is a potent antioxidant that can be administered
easily, its use may be helpful in protection against the free
radical–mediated toxicity of preeclampsia. With this in
mind, Hobson et al. (56) outlined a clinical trial to test mela-
tonin as a potential treatment for preeclampsia (3, 57). In
addition to reducing oxidative stress associated with
preeclampsia, melatonin may benefit this condition by
limiting the hypertension (58) that accompanies this
VOL. 102 NO. 2 / AUGUST 2014
disorder as well as reducing the likelihood of potential
seizures (59), i.e., preventing its progression to eclampsia.
CIRCADIAN MELATONIN AND
PROGRAMMING THE FETAL CLOCK
The placenta is not a barrier to melatonin; melatonin is
rapidly transferred from the maternal to the fetal circulation
(60, 61), and fetal melatonin levels as well as the rhythm
are similar to those in the mother (47, 62). Because the fetus
is not known to produce melatonin, any melatonin in the
fetal circulation is due to its transfer through the placenta.

In the fetus, the master circadian oscillator, the SCN, is
morphologically identifiable in the hypothalamus by midges-
tation. Also, the afferent axons from the retinal ganglion cells
are known to terminate in the SCN before delivery (63), and
rhythms of mRNAs for both vasopressin and c-Fos are ex-
pressed in the nucleus (64, 65). Whether the fetal clock
generates any neural output signals, however, has not been
documented. The SCN sends no useful neural message to
the pineal gland until well after birth (62).

The maturation of the rhythmic expression of the fetal
SCN seems to depend on information received from the
mother. One reliable signal that passes from mother to fetus
is obviously the melatonin cycle. This rhythm may play an
essential role in determining the organization and functional
architecture of the developing fetal SCN. For example, the
exposure of pregnant rodents to constant light, which elimi-
nates the blood melatonin rhythm, provides an inappropriate
message to the master circadian oscillator of the fetus. As a
consequence, the offspring exhibit disturbances in their
behavioral rhythms (65). However, this studywas complicated
by the fact that the animals were also food restricted. Surgical
removal of the maternal pineal gland during pregnancy does
distort the drinking rhythms in the offspring (64); this mal-
functioning rhythm is prevented if the pinealectomized
dams are given daily melatonin injections during pregnancy
(66). The authors considered the possibility that the increased
frequency of attention deficit/hyperactivity (ADHD) and
autism spectrum disorders (ASD) may relate to a prenatal
perturbation of the maternal circadian clock given that the
melatonin rhythm in these children differs from the norm
(67, 68). Collectively, the findings argue that disturbances in
the maternal melatonin rhythm may negatively affect the
circadian maturation of the fetal SCN. If these relationships
exist in humans, it would seem prudent for women in their
last trimester to maintain a regular light-dark environment
to conserve their normal melatonin cycle. Moreover, perhaps
these mothers-to-be should avoid multiple-time-zone trans-
meridian travel and excessive lengthening of the day with
manufactured light, because these behaviors perturb the
normal melatonin cycle. Respectively, they cause conven-
tional ‘‘jet lag’’ and what has come to be known as ‘‘social jet
lag,’’ both of which undoubtedly negatively affect the mela-
tonin rhythm and thereby could alter the development of the
fetal master clock (Fig. 3). These potential associations could
be tested in pregnant humans, but by necessity the studies
would have to be performedunder controlled regular or altered
325



FIGURE 3

The proposed mechanisms by which the photoperiod acting via the
suprachiasmatic nucleus (SCN; the master circadian clock) and the
pineal gland influence circadian rhythms in the host and in the
fetus. Typical ganglion cell axons from the retina project through
the optic nerve and optic tract (OT) to the lateral geniculate nucleus
(LGN), the axons of which pass to the visual cortex. This system
subserves vision or what is referred to as visual vision. A second
group of specialized ganglion cell (intrinsically photoreceptive
ganglion cells) axons pass through the optic nerve as the
retinohypothalamic tract (RHT) and terminate in the SCN; these
subserve circadian vision. The SCN eventually sends a neural
message to the pineal gland via the autonomic nervous system
(ANS) to control melatonin production, which in the pineal gland is
produced and released only at night. The SCN, also via the ANS,
synchronizes circadian oscillators in peripheral tissues, an action
likely supported by the circadian melatonin rhythm in the blood.
Melatonin also acts on the SCN to regulate the master clock.
Melatonin, as well as other blood-borne signals, passes through the
placenta to program the fetal SCN, and, additionally, the
antioxidant melatonin protects the fetus from oxidative stress.
Proper programming of the fetal SCN and protection of the fetus
improves postnatal metabolism, behavior, and physiology.
Reiter. Melatonin, circadian rhythms, and reproduction. Fertil Steril 2014.
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light-dark cycles over an extended period of time. This makes
human studies impractical.

In addition to advancing the maturation of the fetal SCN,
melatonin has an additional benefit in the fetus as in the
mother, i.e., its ability to reduce oxidative stress. When preg-
nant rats were subjected to bilateral utero-ovarian artery oc-
clusion for 20 minutes on day 19 (normal pregnancy duration
326
is 21 days), the brain of the fetuses endured massive lipid
peroxidation and DNA damage as well as compromised mito-
chondrial function 30 minutes later (69, 70). However, when
melatonin was exogenously administered to the mothers in
advance of the arterial occlusion, it attenuated the damage
to both lipids and DNA and preserved mitochondrial
physiology in the fetal brain. The benefits of melatonin
were predictably related to its ability to detoxify ROS and to
stimulated antioxidative enzymes (70).

In fetal sheep as well, a 10-minute hypoxic episode
induced by obstruction of the umbilical cord vessels led to
an elevation in extracellular brain $OH generation and
augmented fragmentation of lipid and DNA/RNA in the brain
(71, 72). The infusion of melatonin into the pregnant ewes
prior to interruption of the blood flow in the umbilical
blood vessels depressed neural $OH levels and mitigated
lipid and DNA/RNA destruction. These protective actions of
melatonin were attributed to its ability as a radical
scavenger and suggested that melatonin may be useful in
situations where there is a heightened risk of fetal brain
damage (72), e.g., in periventricular leukomalacia. This has
been preliminarily verified by Fulia et al. (73), who found
that melatonin reduced lipid damage and nitrite/nitrate
levels in human newborns who had suffered transitory
asphyxia during delivery.
CONCLUSIONS AND PERSPECTIVES
Clearly, both regular circadian rhythms and cyclic melatonin
availability are beneficial in assuring optimal reproductive
physiology in female mammals. For successful ovulation,
regular cyclic events at the hypothalamopituitary level en-
sures properly timed gonadotropin release which leads to
extrusion of the mature oocyte from the ruptured graafian
follicle. Melatonin is synthesized at several sites in the ovary,
and melatonin from these sources and from the blood prob-
ably assist in the maturation of the oocyte and protect it
from free radical damage, especially at ovulation. Melatonin
may also enhance development of the corpus luteum and pro-
gesterone production.

Throughout pregnancy, the circadian melatonin rhythm
passes the placenta and influences the development and syn-
chronization of the fetal master oscillator, the SCN. The impli-
cation of this finding is that, during pregnancy, a relatively
regular undisturbed light-dark cycle should be maintained
to enhance and strengthen circadian rhythms and to preserve
the melatonin cycle. Regular perturbations of the light-dark
environment by contaminating the night with artificial light
undermines the maternal circadian clock and suppresses the
nocturnal melatonin rise, both of which are normally impor-
tant for the developing fetus. Considering these findings, it
would seem judicious that, particularly during the last
trimester, pregnant women maintain a stable light-dark
environment.

Finally, exogenously administered melatonin during
pregnancy may be helpful in protecting both the mother
and the fetus from oxidative stress and mitochondrial
dysfunction. Because of this, melatonin, considering its vir-
tual absence of toxicity, should be considered for clinical
VOL. 102 NO. 2 / AUGUST 2014
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trials where the placenta is malfunctional and where exces-
sive free radical generation is likely, e.g., in preeclampsia.
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